Nonnegativity of exact and numerical solutions of some chemotactic models
نویسندگان
چکیده
We investigate nonnegativity of exact and numerical solutions to a generalized Keller– Segel model. This model includes the so-called ‘‘minimal’’ Keller–Segel model, but can cover more general chemistry. We use maximum principles and invariant sets to prove that all components of the solution of the generalized model are nonnegative. We then derive numerical methods, using finite element techniques, for the generalized Keller–Segel model. Adapting the ideas in our proof of nonnegativity of exact solutions to the discrete setting, we are able to show nonnegativity of discrete solutions from the numerical methods under certain standard assumptions. One of the numerical methods is then applied to the minimal Keller–Segel model. Recalling known results on the qualitative behavior of thismodel, we are able to choose parameters that yield convergence to a nonhomogeneous stationary solution. While proceeding to exhibit these stationary patterns, we also demonstrate how naive choices of numerical methods can give physically unrealistic solutions, thereby justifying the need to study positivity preserving methods. © 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
Nonstandard explicit third-order Runge-Kutta method with positivity property
When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...
متن کاملNumerical solution for the risk of transmission of some novel coronavirus (2019-nCov) models by the Newton-Taylor polynomial solutions
In this paper we consider two type of mathematical models for the novel coronavirus (2019-nCov), which are in the form of a nonlinear differential equations system. In the first model the contact rate, , and transition rate of symptomatic infected indeviduals to the quarantined infected class, , are constant. And in the second model these quantities are time dependent. These models are the...
متن کاملSurvival and Chemotactic Behavior of H pylori at Different Media pH
Background: H pylori is a human gastric pathogen. Chemotaxis is an essential factor in colonization of H pylori, but very little is known about its chemotactic responses at different pH conditions, especially in acidic environment of stomach as its natural habitant. Methods: We first determined survival of H pylori under various pH conditions in the presence and absence of urea. Chemotaxis was...
متن کاملExact and numerical solutions of linear and non-linear systems of fractional partial differential equations
The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & Mathematics with Applications
دوره 66 شماره
صفحات -
تاریخ انتشار 2013